您的位置:首页技术文章
文章详情页

python实现感知机模型的示例

浏览:17日期:2022-07-09 11:16:58

from sklearn.linear_model import Perceptronimport argparse #一个好用的参数传递模型import numpy as npfrom sklearn.datasets import load_iris #数据集from sklearn.model_selection import train_test_split #训练集和测试集分割from loguru import logger #日志输出,不清楚用法#python is also oop class PerceptronToby(): ''' n_epoch:迭代次数 learning_rate:学习率 loss_tolerance:损失阈值,即损失函数达到极小值的变化量 ''' def __init__(self, n_epoch = 500, learning_rate = 0.1, loss_tolerance = 0.01): self._n_epoch = n_epoch self._lr = learning_rate self._loss_tolerance = loss_tolerance '''训练模型,即找到每个数据最合适的权重以得到最小的损失函数''' def fit(self, X, y): # X:训练集,即数据集,每一行是样本,每一列是数据或标签,一样本包括一数据和一标签 # y:标签,即1或-1 n_sample, n_feature = X.shape #剥离矩阵的方法真帅 #均匀初始化参数 rnd_val = 1/np.sqrt(n_feature) rng = np.random.default_rng() self._w = rng.uniform(-rnd_val,rnd_val,size = n_feature) #偏置初始化为0 self._b = 0 #开始训练了,迭代n_epoch次 num_epoch = 0 #记录迭代次数 prev_loss = 0 #前损失值 while True: curr_loss = 0 #现在损失值 wrong_classify = 0 #误分类样本 #一次迭代对每个样本操作一次 for i in range(n_sample):#输出函数y_pred = np.dot(self._w,X[i]) + self._b#损失函数curr_loss += -y[i] * y_pred# 感知机只对误分类样本进行参数更新,使用梯度下降法if y[i] * y_pred <= 0: self._w += self._lr * y[i] * X[i] self._b += self._lr * y[i] wrong_classify += 1 num_epoch += 1 loss_diff = curr_loss - prev_loss prev_loss = curr_loss # 训练终止条件: # 1. 训练epoch数达到指定的epoch数时停止训练 # 2. 本epoch损失与上一个epoch损失差异小于指定的阈值时停止训练 # 3. 训练过程中不再存在误分类点时停止训练 if num_epoch >= self._n_epoch or abs(loss_diff) < self._loss_tolerance or wrong_classify == 0:break '''预测模型,顾名思义''' def predict(self, x): '''给定输入样本,预测其类别''' y_pred = np.dot(self._w, x) + self._b return 1 if y_pred >= 0 else -1#主函数def main(): #参数数组生成 parser = argparse.ArgumentParser(description='感知机算法实现命令行参数') parser.add_argument('--nepoch', type=int, default=500, help='训练多少个epoch后终止训练') parser.add_argument('--lr', type=float, default=0.1, help='学习率') parser.add_argument('--loss_tolerance', type=float, default=0.001, help='当前损失与上一个epoch损失之差的绝对值小于该值时终止训练') args = parser.parse_args() #导入数据 X, y = load_iris(return_X_y=True) # print(y) y[:50] = -1 # 分割数据 xtrain, xtest, ytrain, ytest = train_test_split(X[:100], y[:100], train_size=0.8, shuffle=True) # print(xtest) #调用并训练模型 model = PerceptronToby(args.nepoch, args.lr, args.loss_tolerance) model.fit(xtrain, ytrain) n_test = xtest.shape[0] # print(n_test) n_right = 0 for i in range(n_test): y_pred = model.predict(xtest[i]) if y_pred == ytest[i]: n_right += 1 else: logger.info('该样本真实标签为:{},但是toby模型预测标签为:{}'.format(ytest[i], y_pred)) logger.info('toby模型在测试集上的准确率为:{}%'.format(n_right * 100 / n_test)) skmodel = Perceptron(max_iter=args.nepoch) skmodel.fit(xtrain, ytrain) logger.info('sklearn模型在测试集上准确率为:{}%'.format(100 * skmodel.score(xtest, ytest)))if __name__ == '__main__': main()```

视频参考地址

以上就是python实现感知机模型的示例的详细内容,更多关于python 实现感知机模型的示例代码的资料请关注好吧啦网其它相关文章!

标签: Python 编程
相关文章: